LoRaWAN data rates range for LoRa between 0.3 kbps to 11 kbps, and one GFSK data rate at 50 kbps for Europe. In North America, the minimum data rate is 0.9 kpbs due to FCC rules. To maximize both battery life of the end-devices and overall network capacity, the LoRaWAN network server is managing the data rate and RF output power for each end-device individually by means of an adaptive data rate (ADR) algorithm. The ADR is critical for a high performance network and it enables scalability. A network can be deployed with a minimal investment in infrastructure, and as capacity is needed, more gateways can be deployed and  the ADR will shift the data rates higher which will scale the network capacity.  

No, LoRaWAN as a protocol is strictly for wide area networks, but LoRa as a lower-level physical layer technology (PHY) can be used in all sorts of applications outside of wide area.

The 64 bit Extended Unique Identifier (EUI) is comprised of two parts, the 24 bit Organisationally Unique Identifier (OUI) and a 40 bit serial number. The OUI is allocated  by the IEEE, and the serial number by anyone that owns an OUI, together they form the EUI. AppEUI and DevEUI are both special cases of EUI.

FPort values 1..223 are application specific with their meaning being defined by the application provider. The LoRa Alliance has not specified an assignment for any port in this range to a particular application.

The network server will pass the FCnt (specifically the FCntUp) to the application layer as part of the MACPayload Frame header (FHDR) as specified in 4.3.1 of 1.0.3 of the LoRaWAN Specification. The Application Session Key (AppSKey) along with the FCntUp and DevAddr are used in the decryption of the payload data (FRMPayload) as described in 4.3.3 of the LoRaWAN Specification.

NetID identifies the network.

It is used for roaming. A private network which does not require roaming can freely use NetID=0 or NetID=1.

Other network IDs are allocated by the LoRa Alliance. There are 7 types of NetID, overall 10 million networks can be identified.

Each network ID type corresponds to a different addressing space for end-devices, ranging from 128 addresses to 33 million addresses.

Many end-devices may share the same address in a network, as the device identifier is the combination of DevAddr and network session key.

The devices number can thus reach 1 billion for a single NetID. If a network exceeds this value, it will be allocated additional NetID(s) by the LoRa Alliance.

If a licensed network decides to assign ‘local’ or ‘private’ device EUI then it is not possible to support movement between networks.

If this is the case, then devices should be indicated as ‘private’ in the usage report. In this case, the usage will not be covered on any other LoRaWAN network.

In the Class B principle, the latency is not defined by the number of nodes, but by the latency that the node requests to the network. If it negotiates 32 seconds with the network, then on average, it will be listening to the network every 32 seconds. When the load increases for Class B on a specific gateway, the impact is not delay but potentially overhearing of more than 1 device on a defined "meeting point", in other words if the gateway is out of time slots, it may assign the same time slot to multiple devices. This would cause these devices to lengthen their listening time (and therefore consume more energy), even when the "other" device is interrogated. This impact is mild obviously, on the basis that network actuation is meant to be scarce (a few times per day typically).

It is region specific. For EU863-870, the maximum application payload length is:

  • 51 bytes at SF12 / 125 kHz (lowest data rate)
  • 51 bytes at SF11 / 125 kHz
  • 51 bytes at SF10 / 125 kHz
  • 115 bytes at SF9 / 125 kHz
  • 222 bytes at SF8 / 125 kHz
  • 222 bytes at SF7 / 125 kHz
  • 222 bytes at SF7 / 250 kHz
  • 222 bytes at FSK / 50 kpbs

All values are available in the LoRaWAN Regional Parameters specification.

ADR stands for Adaptive Data Rate. The ADR feature is used to adapt and optimize the following parameters of a static end-device:

  • Data rate,
  • Tx power level,
  • Channel mask,
  • The number of repetitions for each uplink message.

The end-device decides to enable ADR. Once ADR is requested by the end-device, the network can optimize the end-device’s data rate, Tx power, channel mask and the number of repetitions for each uplink message. 

It is region specific. For EU863-870, it   is  from 250 bps to 11 kbps with LoRa® modulation and up to 50 kbps in FSK modulation mode.

No. ADR does not override the frequency channel but enable the use of the pre-configured channels through a channel mask. However, new channels can be deployed with another MAC command, NewChannelReq.

The maximum number of uplink channels is dependent on the PHY band in use. PHY bands like the European one handle a maximum of 16 channels. 3 default channels which can't be modified + 13 channels which can be created/deleted/enabled/disabled. PHY bands like the US915 handles a maximum of 72 channels. They exist all the time but can be enabled/disabled according to the local regulator rules. PHY bands like the CN470 handles a maximum of 96 channels. They exist all the time but can be enabled/disabled according to the local regulator rules. The channels are defined as described below. Channel frequency between 100 MHz and 1.67 GHz in 100 Hz steps. Data rate range (min. and max.)

LoRaWAN uses primarily the 125kHz BW setting, but other proprietary protocols can utilize other BW settings. Changing the BW, SF, and CR changes the link budget and time on air, which results in a battery lifetime versus range tradeoff.

Please use the LoRa Modem Calculator to evaluate the tradeoffs.

ADR is a method where the actual data rate is adjusted to ensure reliable packet delivery, optimal network performance, and scale for capacity. For example, nodes close to the gateway will use a higher data rate (shorter time on air) and a lower output power.

Only Nodes that are at the very edge of the link budget will use the lowest data rate and highest output power.

The ADR method can accommodate changes in the network infrastructure and support varying path loss.

To maximize both battery life of end-devices and overall network capacity, the LoRa network infrastructure manages the data rate and RF output for each end node individually by implementing ADR.